2019生物识别论坛成功落幕:这十大看点不容错过
发布时间:2019-10-29 23:13
2019年9月20日,由芯智讯主办的“融合创新2019生物识别技术与应用高峰论坛”在深圳召开。作为第三届“生物识别产业高峰论坛”,本次高峰论坛汇集了人脸、指纹、声纹、虹膜、静脉识别等多种生物识别技术代表性企业,同时还吸引了大量的产业链的上下游企业、科研院校及媒体参与   近年来,生物识别产业发展非常迅猛。根据前瞻产业研究院发布的数据显示,2007 年全球生物识别市场规模仅有 30.1 亿美元,而2013 年达到了 97.8 亿美元,6 年复合增长率高达 21.7%。2015 年的全球生物识别市场规模达到了 130亿美元, 预计至2020年全球生物识别市场规模将达到 250亿美元。5年内的年复合增长率将达约 13.9%   市场研究公司MarketsandMarkets的最新预测数据则显示,全球生物识别市场将由2018年的168亿美元快速增长至2023年的418亿美元。年复合增长率将达到19.99%   我们都知道,生物识别技术有很多种,比如指纹,人脸,虹膜,声纹,静脉识别等,现在还有新兴起的步态识别、心跳识别等新技术   不过,就目前来看,指纹识别依然占据主导地位。根据中研网数据,2017 年全球生物识别市场规模大约 172 亿美元,指纹、人脸、虹膜识别分别占比 58%、7%、6%。不过,得益于iPhone X加入对3D人脸识别的支持,推动了3D人脸识别市场的快速发展   根据 Yole 数据,3D Sensing 应用市场规模2023年将成长至185.2亿美元,2017-2023年复合增速高达44%,消费、汽车、工商业为主要应用领域   总的来看,在以智能手机为代表的移动终端市场,指纹识别和3D人脸、虹膜识别技术正在持续的渗透,并且,不少智能手机还同时加入了对于指纹识别和人脸识别的支持。而在传统的的门禁安防市场,对于各种生物识别技术的需求也正在持续增加。另外,随着物联网、智能汽车等领域对于安全需求的提升,生物识别技术也在被持续引入。Technavio 的研究数据显示,2016 年生物识别在汽车市场中的整体规模为 1.1 亿美元,未来将会保持 20%左右的增长速度   “由于不同的生物识别技术在精度、安全性、稳定性、识别速度、便捷性、成本、功耗等众多方面有着明显的差异,因此在不同的应用领域中,也会有着各自不同的特点和优劣势。而在多生物识别技术当中选择一些不同技术的融合应用,则有望很好的平衡以上的问题。我们认为,未来多生物识别技术融合将是一大趋势。”芯智讯创始人兼总编杨健在论坛开场致词中说到   根据Technavio的数据也显示,2015 年全球多重识别市场的规模为 42.2 亿美元,未来 5 年将会保持 20%以上的增长速度。而目前在智能手机、智能门锁上、安防、金融领域,已经出现了多生物识别技术融合应用   另外,生物识别技术在应用方面也不再仅仅局限于人的身份认证,目前也已经开始应用于其他物种的识别,比如猪脸识别,通过虹膜识别对宠物进行身份识别等等。杨健表示,“预计未来这也将是一个非常大的市场”   很多的生物识别技术其实早已有之,但为何近几年特别是像人脸识别和语音识别等技术为什么得以快速的爆发?中科院深圳先进技术研究院数字所所长乔宇博士表示,这主要得益于深度学习技术的推动,加速了相关技术在识别准确率上大幅提升,甚至超过了人类   比如在计算机视觉领域,得益于ImageNet的推出,在2010-2015年间,图像识别准确率得到了非常大的提升   从上图我们可以看到,2015年之时,ResNet(152层)网络所能达到的ImageNet的分类任务错误率已经降至了3.5%,超过了人类的水平(人的错误率是5.1%)   具体到人脸识别方面,主要有两个任务:一是1:1人脸比对,比如高铁站,身份证和人脸,进行1:1的比对,确认是不是同一个人;二是1:N比对,这是动态人脸识别,比如在监控得到一张人脸照片,跟公安敏感数据库里的人进行比对,判断这是不是在逃的嫌疑犯。显然后者任务更难   乔宇博士举例称,“以某地区的关口为例,每天大概有6万人通关。2014年时的技术,平均每三个小时系统可能就会有一次误判;到了2015年,平均两天会出现一次误判;2016年时,已经降低至平均一个月才会出现一次误判。而按照现在的技术,系统每半年可能才会有一个误判。这意味着你持假证件成功通关的概率,基本比购买彩票中头奖的概率还低。”   而在1:N人脸识别方面,也是同样如此。乔宇博士表示,“5、6年前人脸识别的应用更多是用于公司的打卡,那时候几百人、几千人才会有比较高的识别率。现在技术可以支持做城市级的人脸识别,可以应对深圳数千万人口的人脸识别,这背后是技术巨大的进步”   “2016年我们实验室做了一个方法中心损失Center Loss,被ECCV2016年接收。单模型可以做到99%识别率以上的模型,并且开源,被广泛应用。”乔宇博士非常自豪的表示   另外,针对目前比较热的3D人脸识别,乔宇博士表示,目前中科院深圳先进技术研究院也在做“基于单幅图像恢复三维人脸结构”。现在的算法可以对人脸上的皱纹、胡须等细节纹理有比较好恢复效果,支持复杂的表情和复杂的姿态   目前,深度学习伴随大数据的应用,性能在不断提升。但是,深度学习在很多方面也有其局限性   乔宇博士表示,比如“小数据+异构多态”,很多数据是不规则、不完全,可能是异构多态,可以看到深度学习面临很大的瓶颈;另一方面,深度学习往往靠数据和算力进行提升,推理的能力很差,无法很好的运用常识和知识。有时候,深度神经网络会犯愚蠢的错误。另外,现在很多深度模型很多是黑箱的,其可靠性、可解决性比较差。在医学应用中,不仅要告诉诊断的结果,而且病人、医生往往希望知道深度网络依据什么理由做判断。最后是深度学习的鲁棒性和泛化能力有很大的缺陷。如下图中的小狗,比如把图片上的一些像素改变,机器可能就会把它判断为别的物体。再比如,本来是一只猴子的图片,如果在他前面放一辆摩托车,机器可能会误认为这是一个人,为什么?因为他看了大量摩托车上都是人的照片   早在2014年初,英特尔就正式推出了首款集成了 3D 深度和 2D 镜头模块的 RealSense 3D 摄像头,它能实现高度精确的手势识别、面部特征识别,可帮助机器理解人的动作和情感。经过数年的迭代,英特尔推出了一系列功能更为强大,更为小型化,成本更低的RealSense模组。目前已被广泛应用于机器人,无人机和增强/虚拟现实(AR / VR)等应用领域   在2019生物识别技术与应用高峰论坛上,英特尔RealSense事业部中国区销售总监何火高详细介绍了英特尔RealSense业务,并首次发布专为人脸认证应用场景优化的RealSense模组以及针对智能门锁市场的英特尔RealSense + Movidius AI解决方案   从目前英特尔的产品线路图中,我们可以看到,英特尔不仅有结构光的产品SR300系列(从2014年就推出了F200系列),还有双目产品(2015年开始发布),目前最新的是D400系列。虽然目前3D结构光和3D TOF非常的火热,但是何火高认为,双目立体视觉是非常有发展前景的方向。“双目3D摄像头可以室内外应用,在不同距离可近可远,相互之间不会产生干扰。它的应用场景和适用性会非常灵活。”   不过,何火高也透露,英特尔将会在今年年底,或者明年年初的CES时,发布ToF的产品L515,其表示,这将是业界低成本的LiDAR解决方案,是非常震撼的产品   另外在位置跟踪方面,英特尔在今年3月还推出了位置跟踪产品T265,这款产品主要面向AR/VR市场,以及机器人、无人机等方面的应用   何火高表示,英特尔在三种不同的3D技术方向都有深入的投入,耕耘了七八年的时间,积累了很多经验,填了很多的坑,在不断地进步,不断地进化自己的产品以及组合   另外,英特尔这个领域不仅有RealSense的摄像头,还有深度的芯片和人脸认证的算法,可提供给客户完整的解决方案   “英特尔可能是全球很少的几家公司里,深度摄像头出货量超过百万的公司,我们是其中一家。这证明我们对产品的技术、生产、制造及质量把控方面,不同领域、不同阶段、不同应用的产品方向的把控。”何火高非常自豪的说到   特别值得一提的是,针对人脸识别这个领域,英特尔也推出了专为人脸认证场景优化的Realsense模组。其特色在于,FOV视场角,尤其是垂直视场角可以做到75度,可以在55cm的距离,从1.2-1.9米的高度全部捕捉到脸部,这对提升用户体验非常有用   针对目前比较热门的智能门锁市场,何火高表示,如果将该RealSense模组加上英特尔的Movidius AI模组,则可组合成一套“完美智能锁”方案   目前,英特尔已经联合小钴科技推出了首款基于Realsense+Movidius AI方案的智能门锁   在2019生物识别技术与应用高峰论坛当天,小钴科技也在活动现场展示了基于该方案的3D人脸识别智能门锁产品   ▲小钴科技CEO陈俊逸在介绍其3D人脸识别智能门锁模组AlpaLook 3D   据小钴科技CEO陈俊逸介绍,这款3D人脸识别智能门锁样品基于小钴科技与英特尔合作推出的3D人脸识别智能门锁模组AlpaLook 3D,其3D深度信息不仅仅用来做活体防伪,更将人脸的深度信息即鼻梁高度、嘴唇厚度等特征,转化为人脸特征,有效防止电子照片、电子视频、3D硅胶面具等伪装攻击,误识率达到百万分之一,相比目前常见的指纹门锁和2D人脸识别门锁,能够带来更高的安全性和便利性   AlpaLook 3D还突破了室内外光照环境影响,实现纯室外光线,佩戴眼镜等现实场景下的使用。同时,高达75度的垂直视场角,可以在55cm的距离,实现从1.2-1.9米的高度全部捕捉到脸部,解决了不同用户身高差对于识别的影响。此外,AlpaLook 3D还解决了3D人脸识别高功耗的问题。据介绍,该门锁方案配备5000mAh的电池即可工作超过一年以上   说起生物识别技术,大家最为熟悉的可能还是指纹识别和人脸识别,相比之下声纹识别技术的关注度并不高   但是事实上,声纹识别技术早已有之,而近几年随着深度学习推动语音AI技术的爆发,语音识别技术在智能手机和智能音箱市场被广泛应用,也开始推动了声纹识别技术的应用   在声扬科技首席科学家张伟彬博士看来,声纹识别技术的发展可以分为三个阶段   第一阶段,基于模板匹配的方法,像人脸一样要先做注册,再做验证,注册时您说的内容要和验证时是一样的。注册时要说“中华人民共和国,验证时也要说中华人民共和国”。这就相当于验证时被限制了,只是比较这两个声音像不像   第二阶段,开始于2000年基于概率模型的研究,我们知道声音有时间的长度,长度是可长可短,有的人说话快,有的人说话慢,首先我要把可变长度的向量变成物理程度,这是基于高斯模型概率统计的。识别率勉强达到95%的概率,95%在很多应用场景是达不到的,因为需要考虑噪声、干扰的影响   第三阶段,则是2012年左右深度学习在很多方面带来爆发性的影响,其中在声纹领域,最近比较大的事件是2017年X-Vector系统的提出,对声纹识别带来很大的提升   “特别是近两年,市场也对于声纹识别有了比较强烈的需求,这一方面得益于声纹识别技术的进一步成熟;另外一方面,在国家政策方面,去年10月左右央行发布了声纹识别技术在移动金融上的应用标准。这是在国家层面、政策层面承认声纹识别技术达到大规模商业应用的门槛,可以满足金融等场景对高安全语音技术需求的应用;第三个方面则是,近几年国内非接触式犯罪比较猖獗,而声纹识别技术可远程通过声音识别身份对此类犯罪案件的帮助极大。所以我们认为声纹识别将是一个新风的口。”张伟彬博士说到   张伟彬博士表示,声纹跟文本内容、语言无关,所以技术上要做到跟语言、文本内容无关是非常大的挑战。就像人脸一样,有了认证就有攻击,声纹识别除了模仿外,还有比较简单的录音播放,如何防止被攻击也是非常大的挑战。另外,早期声纹识别注册时,用户需要说几分钟的语音,用户体验非常差。声纹识别的应用被严重限制了,而声扬科技的技术克服了了这几个技术难题,也在多个场景下实现了大型项目的落地   另外,跨信道也是声纹识别面临的一大问题,因为声音进入到电子系统是需要通过麦克风采集,但是不同的麦克风的差异性会非常大。所以需要克服不同麦克风信道带来的差异,这也是很大的挑战。此外,海量亿级数据库的检索也是一大挑战。不过,目前的声纹比对还是还是在非常低资源的情况下做比对。目前最大的声纹库可能也只是百万级别的   虽然,声纹识别面临的挑战很多,但是声扬科技依靠自身在声纹识别、语音识别、语音信号处理等领域多年的技术积累,在人工智能语音领域拥有数十项自主发明专利,创新性地攻克了多个技术难题,其中核心的声纹识别技术在复杂噪声环境、千万级以上的声纹数据库中可快速、精准地识别出说话人身份,准确率业内领先。特别是在声纹注册环节,目前声扬科技的声纹识别注册,用户只需说出八个中文数字就可以完成,而且声纹验证准确率也非常的高   “我们的优势在于,我们技术上不是只有声纹识别,我们还做语音信号处理,如语音降噪,使得输入声纹识别系统的声音更加干净。另外我们有自己的语音识别技术,通过多种技术的组合可以打造成完整的符合客户要求的解决方案。这是我们公司的竞争优势之一。”张伟彬博士总结到   资料也显示,在2018年10月NIST(全球最权威声纹识别大赛),声扬科技是唯一一家跻身前十的独立企业队伍。足见声扬科技的声纹识别技术之强   结合自身的技术优势,声扬科技也针对行业推出了“声网声纹大数据作战网络”、“FinVoice金融行业智能语音认证系统”、“V + IoT 互联网及智能硬件解决方案”、“ConVoice智能语音会议系统”和“TeleVoice智能电话远程身份认证系统”等行业解决方案   据张伟彬博士透露,全球第1个应用声纹识别技术的国家级社保项目(印尼)采用的就是声扬科技的技术,覆盖250万人群。另外在金融领域,声扬科技的声纹识别技术在银行POC测试当中排名第一,实际落地项目中测得准确率超高99.7%,已服务全球5000万人。而在国内的公安系统,声扬科技的声纹识别技术也有被应用,可满足公安部对此项技术的需求,目前声扬科技的产品已在全国十多个省市的公安部门落地应用   目前3D人脸识别非常的热门,而其背后的3D Sensing技术的应用并不仅仅局限于3D人脸识别,还可以用于医疗美容领域。在2019生物识别技术与应用高峰论坛上,小优智能科技的副总经理代启强分享了高精度3D人脸扫描技术,在美容微整形的术前应用   随着医疗美容行业的普及,人们对自己容颜的关心已超乎寻常,这也带动了医疗美容行业的火爆。数据显示,2016年正规医美市场规模3088亿,2017年达到3817亿元,2018年高达4953亿。中国正规医美市场发展迅速,医美规模增长的同时,增长率亦逐年提升,2016年、2017年、2018年增长率维持在20%至30%   但是当前传统模式中求美者只能依靠想象或者手绘图来确定手术效果,一旦顾客对后期效果不满意,必然会产生医疗纠纷,因此迫切需要一种采集设备,能够方便快捷的采集到顾客的脸部真实数据,通过对真实数据的虚拟改动,能帮助顾客更加直观、生动、科学的看到自己手术后的模样,更有利于帮助求美者提高自信心,增加手术满意率。同时也有利于医生更方便的制定手术方案   而当前的需求则是,设备需要最大限度符合原始人脸数据;设备体积小,方便操作;设备性价比高;方便集成   对此,小优智能科技选择采用成熟的相移动态结构光技术来采集人脸信息。与目前应用较多的3D结构光和TOF 3D技术相比,相移动态结构光技术利用的是MEMS微振镜每秒几千次的振动,可以将点光源变成的线光源放大扩散出去,利用高频激光器的工作原理,控制生成有效的含有编码的正弦性动态结构光图案,因此可以获得高精度的3D图像信息   而且,由于基于的是MEMS技术,所以可实现投影设备的微型化。同时成本也可以进一步降低。此外,小优智能科技还提供了丰富的SDK接口供相关美容企业使用   代启强表示,高精度人脸扫描特点及其优势主要在于,通过非接触式数据采集系统,全方位为用户提供眼部、鼻部、下巴、面部、胸部、臀部等局部或全身各部位的三维数据;通过因人而异的全息数据采集,计算机高速精算,直观展示最完美比例的面孔,身段;可视化呈现求美者的个性需求,可与医生互动共同参与方案设计,增加用户满意度;直观呈现三维立体成像及整个术前、术中、术后的效果,展示多种手术方案   六、思立微CSM&UTM指纹识别技术首次公开分享,LCD屏下光学指纹方案首次曝光   目前指纹识别技术在智能手机上已趋于普及,不过在全面屏、5G的趋势之下,指纹识别技术仍在快速的迭代,由此也推动了屏下指纹技术的发展,目前屏下指纹已经成为了中高端智能手机的标配   而在目前的屏下指纹市场,汇顶科技虽然仍占据了大片市场,不过思立微凭借自身的技术以及与OPPO等手机品牌厂商的合作,也成功跻身第二大屏下光学指纹厂商   在2019生物识别技术与应用高峰论坛上,思立微高级产品经理孙云刚介绍了自家的针对5G手机优化的屏下光学指纹方案CSM与UTM,同时还首次曝光了其LCD屏下光学指纹方案(目前被广泛应用的屏下光学指纹方案主要是基于更为轻薄的OLED屏)以及MEMS超声波屏下指纹方案   孙云刚表示,思立微的屏下光学指纹方案,拥有业界首创的单芯片(MCU与Sensor集成)架构设计,首创可调焦指纹识别模组,并且首个将3P Lens应用在指纹识别模组的厂商,新一代光学指纹芯片7001A灵敏度提升了40%   而现在随着智能手机摄像头(旗舰都开始上三摄、四摄了)数量的不断增加,以及5G的到来,对于智能手机内部的空间也提出了更高的要求。为了应对这一变化,思立微也在维持产品原本各项性能指标的前提下,通过工艺改良和结构创新,推出了更小尺寸的屏下光学指纹模组   首先是最新一代的适用于OLED屏下光学指纹识别的CSM (chip-scale module)方案GSL7001F。相比上一代传统COB(chip on board)方案,在模组尺寸(XY方向)极具优势,面积可缩减50%,将可为智能手机内部的电池、摄像头等内部器件提供更多的空间,并且模组厂可以直接采用传统的SMT工艺生产,品质、良率、产能都更有保障,成本也可进一步下降。详细的介绍可以参看芯智讯此前文章《尺寸缩小50%!迎5G手机商用,思立微首发新一代CSM光学指纹模组》   除了XY方向上进行尺寸缩小的CSM方案之外,思立微还准备了针对Z方向(即模组高度)上进行缩减的UTM方案。据介绍,UTM方案可以将屏下指纹模组由原来的3.2mm降低80%至0.4mm,感应面积为54mm?,可提高较高的解析力。而且,UTM方案还可固定在中框上,可以跟OLED进行解耦,不存在贴屏和拆屏的损失。孙云刚称两种方案均已送样   我们都知道,目前的屏下光学指纹方案之所以选择OLED屏,主要是由于OLED可以自发光,无需背光,且极为轻薄,但是OLED屏成本较高,这也使得目前的屏下光学指纹方案主要被应用于中高端智能手机。而在中低端智能手机市场,更多采用的是LCD屏   但是,LCD显示屏幕由阵列基板、彩膜基板、液晶层、上下偏光片和背光源组成,由于结构层数多,多种膜材透光性差以及背光源的存在,使得LCD屏下光学指纹的实现非常困难。特别是想要利用可见光来实现几乎是不可能   因此目前的LCD屏下光学指纹大多选择的是红外光。同样思立微也选择的是红外光来进行成像,在波段选择上,思立微同时开发研究了850nm、940nm和1310nm红外光成像方案。但是,850nm会有可见光可被人眼看到,会影响屏幕显示效果,而1310nm红外LED成本较高,并且光电转换效率低,相比之下940nm效果较好,因此也成为了思立微的首选   那么红外LED如何放置呢?思立微同步研发过多种方式:第一种方式是将红外LED和白光LED共同放置在背光模块中,通过不同引线控制显示和指纹识别,可以最小的占用整机空间;第二种方案则是将红外补光灯放于CG(Cover Glass)侧表面,成像和识别效果极其优秀,但由于目前普遍使用的2.5D CG,无法大规模普及此方案;第三种方案将红外灯放置于CG侧边通过CG横向道光的方式补光,但由于光在CG内的全反射效果,使得成像信号极其微弱;第四种方案就是将红外补光灯放置于显示屏下方,此方案的优点为不增加边框,可以带来更好的整机ID收益,但对算法要求较高。因此,最终思立微选择了CG下补光方案   为解决背光干扰的问题,思立微采用了可以区分红外和可见光的材料用于背光模组设计,从而使得指纹成像和识别效果大幅提升   此外,思立微单独针对LCD屏开发了专用于LCD屏的指纹识别算法,同时通过IC设计和工艺的开发设计出了红外高响应的指纹识别芯片   孙云刚透露:“从2018年初到现在,思立微的LCD屏下指纹研发已经快两年了,这个时间在指纹领域,开发周期算是非常长的,也是持续投入,并且投入很大。从最初指纹LCD屏下什么都看不到,到现在的效果和OLED基本可以持平,攻克了很多技术难点。目前的方案和技术均已准备好,现在与终端探讨实际项目的应用。”   此外,孙云刚还简单介绍了思立微在研的屏下超声波指纹识别方案。该方案是基于硅晶MEMS方案,多发分时接收,可以提高SNR。孙云刚表示,MEMS器件性能稳定,相比目前市面上的有机材料性能稳定,由于MEMS采用的是无机压电材料,不会随环境、复杂情况下而波动很大。目前这个样品还在内部验证阶段,明年将有望商用   除了指纹、人脸之外,虹膜识别也是应用相对较多一种生物识别技术,其很早就已经广泛应用于金融、医疗、安检、安防、特种行业考勤与门禁、工业控制等领域。2015年的时候,富士通首次将虹膜识别技术应用于智能手机当中,随后三星也将虹膜识别引入到其旗舰机Note7当中,之后三星的S8/S8+也再次标配了虹膜识别。不过,随着3D人脸识别以及屏下指纹的应用,使用并不算便利的虹膜识别在手机市场的应用受到了一些影响   在2019生物识别技术与应用高峰论坛上,芯智讯邀请了中科院深圳先进技术研究院集成所研究员陈巍博士和中科虹霸移动业务市场总监陈桦对于虹膜识别技术的最新进展与行业应用进行了分享   相对于其他生物识别技术来说,虹膜在人出生6-8个月之后就趋于稳定,并且虹膜拥有虹膜有226个生物特征点,具有极高的唯一性,即便是拥有一样面容的双胞胎,其虹膜也不一样,两个人拥有相同虹膜的概率是10的27次方分之1,这个概率可谓是极其的低,要知道一年掉落到地球上的雪花的总的片数也只有10的22次方。因此,虹膜识别具有极高的安全性   有研究数据显示,虹膜识别的交叉错误率仅有0.00077%,远低于声纹、指纹、掌纹及人脸识别,具有极高的稳定性、安全性和实用性   另外,虹膜还具有非常强的生物活性,比如瞳孔的大小会随光线强弱变化,视物时有不自觉的调节过程,有每秒可达十余次的无意识瞳孔缩放,这也使得虹膜也会发生每秒十余次的震颤;此外,在人体脑死亡、处于深度昏迷状态或眼球组织脱离人体时,虹膜组织即完全收缩,出现散瞳现象。这些特性也使得虹膜具有极高的防伪性   因此,虹膜识别往往被应用于安全级别要求较高以及虹膜识别较为便利的一些领域。比如美国国防部自动生物特征识别系统( ABIS);印度全民身份认证(具有极高的唯一性);阿联酋出入境系统(也是由于中东人的习俗,很多女士通常只露出两个眼睛),矿山及一些手工劳动强度较大的人员安全管理(这些人员通常手指的指纹磨损比较严重)等   中科虹霸移动业务市场总监陈桦表示,印度全民身份认证、阿联酋出入境系统,国内的400多家矿山,包括神华集团、中煤集团、同煤集团等特大型煤炭企业所采用的虹膜识别系统都是基于中科虹霸的技术   此外,在移动设备端这块,2016年开始中科虹霸就有与多家手机公司、移动方案公司合作,截止目前推出了十几款移动虹膜设备和手机。针对目前热门的智能门锁市场,中科虹霸也推出了虹膜识别门锁解决方案,并且已经量产了   “门锁类追求的关键点,一是安全性,二是易用性,三是长续航。”陈桦透露:“中科虹霸基于平台上做了深层优化,安全性上可以做到百万分之一的安全级别。易用性方面,我们识别距离可以做到30-55公分。在长续航方面,7000毫安时电池每天18次的开启,我们可以超过100天的续航时间。可以说是目前虹膜方案里是续航时间最长的方案。第二代还在迭代,还有更好的场景。”   另外在中远距离识别产品方面,中科虹霸也推出了“虹膜+人脸”的双模一体化产品,提供了主流接口输出方式,RS232、RJ45、USB2.0等,识别精度可以做到百万分之一   既然虹膜识别这么好,为什么在普通消费级市场应用远不如指纹和人脸识别呢?陈巍博士表示,传统虹膜成像系统约束过多,系统用户体验差。因为虹膜识别的成像距离较近(通常小于1m),景深小,视场小,捕获体积较小,需要用户配合调整好头部、眼睛姿势,并且不能同时对双眼成像,识别速度较慢。还有就是虹膜识别的成本也相对较高。这项都限制了虹膜识别的应用   陈巍博士认为,远距离、大视场、大景深、非配合或少配合的虹膜成像系统是趋势   ▲中科院深圳先进技术研究院长期从事“模式识别”技术和光电工程技术研究,相关成果已达到世界领先水平。目前已经可以实现60-100cm范围内清晰成像   陈巍博士表示,“这是我们第一代产品,我们可以在不同的身高需要微微低头就能实现快速虹膜识别。到今天我们形成了全系列产品的Demo,包括我们做的类似VR眼镜虹膜采集设备,我们在安卓端、门禁、门锁,这是我们新疆试点做的虹膜识别仪器。这是多目虹膜设备,覆盖1-1.9米身高,缓慢走过来可以做快速虹膜识别。”   但是,要想实现1-3米的更远距离的虹膜识别,为保证识别精度,确实可以选择更大的高清相机,但是计算量和硬件成本会呈几何级增加。还有一种方案就是;通过光机结合的方法,实现小箱子循环识别,这也正是中科院深圳先进技术研究院目前研究的方向   虹膜识别不同于人脸,需要成像特定区域,所以目前都是一幅图识别一个人,暂时没有多人同框识别方面的研究。同时,虹膜会受到遮挡的影响,比如带眼镜、隐形眼镜等。陈巍博士表示,“我们实验室一直在研究戴眼镜、隐型眼镜等。目前我们做到除了美瞳(它会把虹膜信息覆盖掉)之外,戴眼镜、墨镜、隐型眼镜不太影响虹膜识别的效果。”   由于绝大部分虹膜识别是采用红外照明,虽然在弱光照环境下大多数情况不受影响,但个别人由于特别暗的环境下瞳孔扩大遮挡虹膜可能会造成难以识别。此外,虹膜识别在强太阳光的室外环境的应用也是难点   最后,目前虹膜识别的流程仍和设备然是比较的传统,多年来也没有什么太大的改变。需要特定的设备才能采集虹膜信息,图像预处理、编码、再拍一张比对。陈魏博士表示:“人工智能是未来的方向,我们也想用人工智能的方式做虹膜识别,但目前没有很好的解决方案。”   八、七鑫易维:眼球追踪技术助力活体检测,与虹膜识别/人脸识别结合应用更具价值   以上我们讲了很多种生物识别技术,但是不可避免的,都可能会遭到各种各样的攻击,比如攻击3D的人脸识别,可以通过打印3D的人脸面具来实现,攻击声纹识别,则可以通过高保真的录音来实现,攻击指纹识别可以通过假指纹模来实现等。所以,活体检测也就成为了提升生物识别技术安全性的一项重要手段   在2019生物识别技术与应用高峰论坛上,七鑫易维手机业务部产品总监孔祥晖介绍了眼球追踪技术在生物识别领域的活体检测方面的应用   孔祥晖表示,活体检测的方法大致可以分为三类:一类是动作指令活体检测(就根据指令进行相关动作),这一类活体检测大多数应用在银行等高可靠性、高要求、高标准的行业应用里;第二类是静默活体检测,主要采集用户的微表情,看眼纹、眼动、眼皮(是否眨眼)信息,通过微表情确认用户是不是真人;还是假人;第三类是红外活体检测,主要利用光谱特性的不一样,在不同介质的反射上有不同的反射结果,通过分析拍摄出来的图片分析这是真人还是仿真。而七鑫易维所采用的则是基于眼球追踪技术做活体检测   人的视觉里是有中央视觉和周边视觉,所谓眼球追踪技术,实际上就是判断用户的中央视觉的注视方向和注视点的位置。其工作原理是,利用红外灯照射在人眼上出现光斑,使用照相机拍摄光斑以及瞳孔的图片,然后通过视线估计算法处理图片,最终计算注视方向以及注视点落点   孔祥晖表示,眼球追踪技术采用的是不可见红外光,因此可以实现无感式追踪,并且具有低延迟的特性,注视准确率不低于98%,操作距离可适用于30-100cm,不仅可以提供注视点信息,还可以提供瞳孔位置、眨眼等信息   据孔祥晖透露,近年来七鑫易维的专利数量增长很快,特别是眼球追踪技术同族专利数量方面,目前已达94件,位居全球第一   在眼球追踪技术应用方面,除了前面提到的活体检测之外,七鑫易维还将眼球追踪技术广泛应用于智慧医疗、VR/AR/MR、智能手机、广告传媒、智能汽车、机器人、航空航天等领域   比如,用户在线购物的时候,浏览了什么产品或者哪些广告的时候注视的时间较久,对于什么样的广告会更容易吸引到用户的注视。通过对于眼球追踪的数据分析,可以挖掘出更有价值的信息   “我们经常把这些东西应用到运动员或者广告分析上,判断广告做得好不好,用户是否真的关注到产品,还只是关注到广告上美女的图片而没有看产品。这是眼球追踪技术要做的东西。”孔祥晖说到   此外,在技术融合方面,孔祥晖认为,眼球追踪技术可以很好的与虹膜识别技术相融合,并且会衍生出更丰富的应用   比如,当用户第一次使用眼球追踪时,通常需要进行校准,传统校准信息记录和选择需要使用手动的用户管理方式。结合虹膜识别之后,用户佩戴VR/AR设备后,可自动识别用户并选择其校准数据。同时,不同用户在使用VR/AR应用程序时,例如玩VR/AR游戏时,不需要进行手动的用户切换,或者进行复杂的账号密码输入,可通过虹膜识别自动识别用户进行自动登陆。眼球追踪则可以用于交互等操作   另外,在前面提到的电商应用方面,当用户进行支付行为时,必须要进行ID确认,而虹膜识别则成为核心功能,同时结合眼球追踪进行活体检测。眼控交互和虹膜识别的结合,使用户从浏览商品信息到确认支付购买的整个购物流程非常的流畅和自然,甚至比在传统的电商网页上或电商手机App上更加自然和快捷   最后,在VR/AR社交应用中,虹膜识别可以提供社交身份验证,保证在VR/AR社交应用中参与者的身份真实性。同时,需要使用眼球追踪复现人眼的状态,这样使Avatar看上去像是真实的人物。如果不使用眼球追踪,所有Avatar均直视前方,会产生严重的“恐怖谷”效应   总的来说,眼球追踪技术的应用很广,并且与虹膜识别等其他生物识别技术融合应用,将会带来更多的玩法和更好的用户体验   九、嘉楠科技:AI芯片是智能时代的核心,第二代AI芯片KendryteK510首度曝光   而随着人工智能技术的发展,通过机器学习,各种生物识别技术的准确率及安全性也在快速的提升。人脸识别和语音识别技术近几年快速爆发也正是得益于此。而人工智能的技术发展则离不开强大的算力支持,相比传统的CPU、GPU来说,专用的AI芯片性能更强,且更具效率   特别是随着物联网技术、5G技术的发展,边缘计算已是大势所趋,AI计算也开始越来越多的被放在了边缘侧。而这也推动了AI芯片市场的爆发   根据IDC&Seagate的数据显示,2020年全球物联网终端连接数将达到193亿,其中中国物联网终端总数将达44.8亿。到2025年,基于边缘的AI芯片市场规模将达516亿美元,相比之下云端的AI芯片市场规模只有146亿美元   在此趋势之下,作为全球第二大矿机芯片厂商,很早也开始了基于边缘AI芯片的研究,随后成立了专注于AI市场的嘉楠科技,转型AI芯片厂商,并于去年9月推出了首款AI芯片Kendryte勘智K210   在2019生物识别技术与应用高峰论坛上,嘉楠科技销售总监蔡博介绍了勘智K210特色及在生物识别领域的应用,同时还透露了即将于今年年底发布的新一代AI芯片K510   蔡博表示,生物识别技术的应用场景主要集中在端侧。例如智能门锁、智能门禁等场景。由于设备端严苛的功耗与算力条件限制,AI算法对用户生物特征的提取与处理效率遭遇瓶颈。他表示,目前的端侧设备通常存在1-2秒的时间延迟,无法即时响应用户的行为,是生物识别技术落地面临的主要挑战之一。因此,边缘AI芯片的引入将有助于进一步加速生物识别技术的落地   嘉楠科技的第一代AI芯片勘智K210基于28nm工艺,采用的是RISC-V CPU,定位于人工智能与边缘计算领域,主要目标市场定位在IoT市场。通过完全自主研发的神经网络加速器IP,可在仅0.3W的低功耗下提供1TOPS的算力支持。同时具备机器视觉和语音识别能力,可以在超低功耗下进行高速卷积神经网络计算。如基于卷积神经网络的目标检测和图像分类任务,如人脸检测和人脸识别,多分类物体检测与识别等。K210可以独立、实时的获取多种被检测目标的大小与坐标并标识出被检测目标的种类   除了以上的机器视觉能力外,勘智K210还具备机器听觉能力。芯片上带有最高支持8通道、16方向的高性能麦克风阵列的音频处理硬件,可以进行硬件加速的实时声源定向与波束形成,无需占用主CPU资源。一颗芯片就可以实现声源定向、声场成像、波束形成、语音唤醒、语音识别等机器听觉功能   在应用方面,该芯片自量产发布 一年多来,已经被广泛应用于无感门禁、病虫害智能识别与防治、智能门锁&智能电表等众多领域   蔡博表示,嘉楠科技下一代芯片KendryteK510面向5G场景设计,将用于新零售、智能驾驶等更多领域   在活动最后的论坛环节,芯智讯创始人兼总编杨健邀请了主要从事静脉识别的智冠股份总裁於巧红、七鑫易维手机业务部产品总监孔祥晖、知名智能门锁品牌优点科技的CEO孟勤海、思立微高级产品经理孙云刚、小优智能科技副总经理代启强、嘉楠科技销售总监蔡博一起,围绕多生物识别技术融合、应用创新与隐私安全等话题进行了讨论   ▲从左到右依次为:智冠股份总裁於巧红、七鑫易维手机业务部产品总监孔祥晖、优点科技的CEO孟勤海、芯智讯创始人兼总编杨健、思立微高级产品经理孙云刚、小优智能科技副总经理代启强、嘉楠科技销售总监蔡博   其实在前面的不少演讲嘉宾的演讲内容当中都已经提到了很多关于多模态生物识别技术融合的内容和案例。比如,七鑫易维手机业务部产品总监孔祥晖谈到的眼球追踪技术与虹膜识别技术的融合,中科虹霸推出的“虹膜+人脸”的双模一体化产品。那么在论坛环节各位嘉宾又分享了哪些新的观点呢   杨健:目前在智能手机、智能门锁上都开始出现有两种或者两种以上的技术融合在一起。比如,现在的智能门锁有“指纹+人脸”,还有前面嘉宾提到的“虹膜+人脸”等组合,前面声扬科技也分享了声纹识别技术,声纹识别也有很强的便利性。比如,冬天晚上买菜回家,两手提着菜,带着帽子,我们可能不太方便用指纹,如果这时候用人脸加声纹,占到门口,喊一句“我回来了”就能开门。可能单一一种指纹、或者人脸、或者声纹,对于家庭来说,安全系数可能还不够高,但是如果两种技术融合使用,那么安全性无疑将大大提升,比如人脸或者指纹+声纹”可能可以达到近似于虹膜的安全度。请各位嘉宾聊一聊各自领域的技术融合,大家未来有没有新的方向   於巧红:谈到融合,在我们掌静脉行业里多种生物识别可能是趋势,目前大家都在形容产品,任何单模态生物识别的精度有上限,不管是静脉、虹膜,百万级一定会出现误差。比如我们用于军工等行业,要求你绝对的高精度,这时候必须有多模态   现在应用多模态的场景有两个:一是高精度对高精度,解决部分的适度远距离和近距离的识别。二是“掌静脉+人脸”这应该是比较常见的组合方式,主要解决海量库里检索小库的精度识别。从目前来看,我们放在一亿的库里,利用“人脸+多模态”来说,其精度可以达到大家的预想,是非常理想的方式,可能后续计算上的标准会高一点。这可能就需要性能更强的AI芯片   从目前行业来看,不同行业中客户运用产品,对于单模态产品的精确率,他认为自己有缺陷,客户方面也在推动我们做融合,我们相信在生物识别行业里技术的交流融合各方面应该有更多的产品和场景出来。谢谢   孔祥辉:我比较同意於总的发言,多模态一定是一个趋势。现在高精度或者新技术应用往往是在大众化,比如手机等应用场景。要把手机技术做好要花费很多时间,其他传统行业,如门锁等行业都可以借助研究成果做新技术的拓展。在不同领域里使用的距离、安全性等级的要求是不一样的,同样满足高标准,也可以满足低标准。这是我们作为公司或者创业公司发现市场的需求点和商业机会点,跟我们或者其他公司的技术融合,这种融合包括技术上、商业上的融合   孟勤海:杨总提出的问题,我一直在想过去一年时间一直在想这个事情,我们也想做人脸锁、指纹锁等。我们本身也是做这些技术的应用,我们同时面对市场和消费者的声音,我们把这么多识别技术合在一起是为了更安全,从现在用户发声的安全问题来看,我好像没看到过正规品牌厂商的指纹门锁被破解的。相反主要是五金结构件上被攻破了,比如锁芯强度,用稍微大一点的一掰就断了,门就开了   我们要考虑场景,确实有需要的场景,这时候需要把技术合在一起,有这样的需求。现在从智能门锁现有的客户实际情况来看,安全问题更多在于生物识别之外的技术   此外,如果多种技术用在门锁上,还有一个功耗问题。原来我做手机,对功耗很敏感。转到安防后,对功耗更敏感。不可能在家里挂一根电线,不管人脸识别或者其他的识别,如何把功耗做得非常好,这是非常挑战的。你要用户一个月换一次电池,他是不能接受的,至少半年。一个低功耗设计、还把技术合在一起后,这是非常难的。这是我的理解   孙云刚:谈到融合,我认为生物识别要考虑两点:一是方便性,二是安全性。不同场景的需求不太一样,基础场景不涉及支付或者有一些低级别防伪要求可以用低级别的识别技术去做。涉及相对安全的,如支付、门锁等比较隐私或者安全的东西,这时候可能需要高级别的防伪。杨总提出融合,有单模融合和双模融合。比如指纹,我可以用一个指纹或者两个指纹,一个指纹误识率是五万分之一,两个指纹可以达到非常高的安全级别。另外,和虹膜、声纹融合也都是提高安全级别非常好的方式。前面孟总谈到目前大厂没有看到指纹门锁被攻击的实例,思立微等上游芯片原厂也在做硬件和软件的防伪,可以有效提高包括指纹在内的生物级别安全性   小优科技代总:我认为融合这一块是未来的方向,我们要考虑这里面有性价比的问题,不是说用各种各样的技术融合在一起,有可能是这种场景用一两种是最优的,也是最符合市场的   蔡博:因为我们做AI芯片,看到AI产品落地的场景比较多,基本用到生物识别融合的比较多。根据不同的应用场景,考虑到安全、隐私等相关的,还有方便性、快捷性,他们都有自己的需求。融合,现在所有的方向都在做,能否适合自己,创造出自己的想法,这是最主要的。低功耗、性价比在不同的产品上都有不同的追求。目前方向来说,在特定的方向来说是可以的,但在某些领域,像一些特殊的领域可能无法做到融合。据我了解公安部做相关的判别、开枪定位等,不可能开枪扫他指纹,你也没那机会。特殊场景应用来说,特定的只限于一种。我们知道实际商用来说,不同的门锁、门禁可能比较多,关键是要找到适合自己的   杨健:刚刚提到目前在门锁类方面,指纹还没出现被攻破的问题。但是,从另一个角度来看,是不是因为这个行业刚刚兴起,而且是成熟的技术应用在这个行业。但是,当普及到一定程度情况下,当市场越来越大,很多家庭用了智能锁后,是否会有比较多针对这一类型破解的技术出来?对于黑客来说,它要能够轻松获利才会做。针对智能手机,已经有蛮多针对指纹破解的技术。为什么苹果推3D人脸识别?苹果觉得人脸比指纹更安全   但是对于安卓手机厂商来说,没有苹果那么的强势,要兼顾用户使用习惯。所以很多有采用3D人脸识别的同时,也有配备指纹识别。另外对于用户来说,通常需要一个主动掌控感。现在的人脸手机拿出来就解锁了,但可能其实我只是想看一下时间。另外人脸识别速度太快,用户可能反而觉得不太适应。因为,用户通常是会有个意识,我让你来解锁,你才解锁,而不是我没有想要解锁,结果拿出来就解锁了   融合是一个大的趋势,目前在某些领域特别在民用这一块,涉及安全性、便利性和成本的平衡,两种技术融合可以适用更多的场景,更为便利的,融合也能提升其安全性,这是相对比较可行的方法   比如,刚刚提到虹膜的安全性比较高,但是它有成本和距离的问题。在不同场景下选择不同的方案,这是应用厂商应该考虑的事情。在技术上,这没有太大的问题,只是应用上怎么选择、组合,如何降低成本和降低功耗,提高用户体验   现在的每一家厂商,比如我是做虹膜的,可能我只是关注虹膜这一块,关注与我合作的厂商方面。这也使得我对于生物识别领域其他类型的技术的进展知之甚少,没有打破认知边界,这也将会限制自身技术的突破边界,与其他技术融合应用,拓展商业机会。我们办这个活动,就是希望大家能够打破边界,促进交流与合作,推动产业上的大融合   杨健:接下来讨论的话题是关于应用方面的创新,像虹膜、声纹、指纹等都是相对成熟的技术,技术上想要进一步创新相对比较困难。但是,在应用上的创新有很多的途径和路线   我之前提到生物识别,生物识别针对的是“生物”,并不仅仅局限于人,还有其他的生物,这个市场空间很大。比如前面谈到的声纹识别,能否应用到动物,比如应用到珍稀物种的保护,大熊猫、鸟类等。因为声纹识别的优势是可以在非视距范围内,远距离实现   中科院先进技术研究院陈巍博士在演讲最后也分享了虹膜识别在犬类识别上的应用。目前犬类身份识别方法主要是植入电子芯片,但是这是创伤性植入方式,有一定概率出现过敏,严重时导致死亡,对使用人员可能有辐射影响,受到绝大多数犬主抵制。而远距离的虹膜识别则是一个比较理想的方案,如果识别距离太近,犬只容易出现紧张   不过,犬类的虹膜与人类的虹膜有明显的差异,要实现精准的识别,还需要做很多工作。目前国际上已经有团队首次进行大批量(约100只)犬只虹膜识别实验,团队专注于动物虹膜识别设备与服务,后期可扩展到牛、马等,用于食品溯源、医疗、保险等   此外,还有一些企业做动物的面容识别,比如广州有家企业,他们专门做农业领域的猪脸识别,做养殖的管理,追踪每只猪的生长情况。接下来请各位嘉宾谈一谈关于应用创新上有没有自己的看法   於巧红:谈到创新,对于我们做技术开发工作者来说是很大的难点,任何一个技术有一个根源,也就是技术的本质。比如我们是基于静脉识别,广泛来说还是基于图像识别,目前这个产品是基于人的识别,以身份为主。我们目前跟上海一家器械公司在沟通,将静脉图像应用于医疗的辅助,这在国外有企业在尝试,德国就有。特别针对婴幼儿、老人和肥胖人群的静脉注射,这是比较简单的静脉图像成像的过程。我们身上任何有静脉的地方都可以通过红外成像,不光做身份识别。特别在医学健康领域,我们静脉成像的清晰度跟医学密切相关,但是数据分析不是我们能做的   另外, 静脉识别,不仅涉及手掌静脉、手背静脉、手指静脉还有手腕的静脉,目前手腕的静脉识别跟机构探讨的方向是可穿戴,我们的手腕静脉跟心脏连在一起,信号的传输相对更明显,虽然采集的周期会长一点。这些应用会突破固有的产品形态,我们可能是“刷手支付”,以后是戴在手上的微型静脉器,跟身份进行连接和识别   创新过程中,我们也大量借鉴人脸和其他深度学习技术的理念和方法,对自己的技术进行创新和改进。相互的学习是非常重要的。我们更远的要看到生物识别乃至信息技术及其他技术方法论,这对我们来说是促进。谢谢   孔祥辉:我们做眼球追踪技术,大概分为两个阶段:一是从零到一,包括技术创新、产品。二是从一到N的阶段。从一到N,是我们公司现在经历的阶段。最早我们眼球追踪技术应用范围很窄,只是给医疗用。霍金老师的轮椅上面有眼球追踪最早的应用,这是用于渐冻人和外界的交互,这项技术最早的应用范围是在医学上给这些人服务。慢慢我们把这些技术应用在其他领域,常用的是高校体育运动员的分析,我们现在给AR/VR提供解决方案,这业是行业认可的成熟的方案   一家公司思考从产品到行业应用,多模态的情况下,可以把你原有的技术更加的扩散。这里有一个简单的方法论,你如何把这些自己的技术应用在其他行业,做营销的人都知道,客户的满意度,就是要不要做这个产品的衡量标准。要判断你在这个技术在这个行业有没有价值,有价值,就要看成本和价格,用户满意度出来了,才要考虑要不要做多模态的扩展,这是我的理解。谢谢   孟勤海:两位讲得非常好。我举一个例子,可能很小,但很有意思。我们在小米有品上推了一个小的指纹挂锁,指纹验证就能打开,旅游放在箱子上非常实用。只要符合用户的需求,就一定是非常好的创新方向   孙云刚:作为应用创新,从我们作为指纹芯片或者指纹方案商的角度,我并没有太多的发言权,我们能做什么?把我们的技术如何做得最好,我把我们的技术做好,把防伪、防攻击做强,把识别率做高,终端是跟着应用走,技术留给终端   代启强:我们是做3D模组的,我分享两个市场反馈的需求:一是我们把技术用在人体扫描上,在医疗行业作为保健这一块需要高精度人体扫描设备,精确确定人体穴位的位置。然后通过机器人进行按摩。二是用高精度扫描设备把人的信息完整扫描下来,可以通过信息得到这个人行走时在鞋子上留下的痕迹,属于刑侦上的范畴   蔡博:我们是做AI芯片公司,我们的客户有蛮多创新的想法。很多公司想在原有的行业做了很久,有自己的竞争对手和客户,如果想拓展新领域,公司有突破,一定要想办法做出创新型的应用。对于我们在生物识别行业的客户来说,我们会更多建议他们走出去,走出现有的行业圈子。各行各业都会在某一个点、某一个方向上有想法和突破。比如前面说到的在医疗等方面的应用。可能某一个想法、创新是不错的,稍微增加一点成本,在功能上、体验上增加很多。我们自己客户的应用场景比较多,不仅限于活人,还有动物的。比如之前杨总提到的,我们自己的客户很多在做这个。百度最早提出智慧养猪,猪养多大,识别猪的大小,看是不是这只猪,进哪个圈、吃多少东西。有些生物长的速度太快,无法时时刻刻记录数据。如果只是记录体型、体貌特征看数据,可能找不到这个生物。如果从虹膜等其他相关的数据提取,可能就找到它了。这些创新和突破更多的是公司需要思考的地方   我们是做AI芯片的,是帮助客户用AI去实现他们自己的想法,做生物识别的也比较多,他们的想法千奇百怪。比如有追踪野生动物的,在森林里大量布点,包括通过声音、图像来进行识别,有多少只野生动物,是否产了后代。如果把我们的生物识别技术融合进去,相信会对他们有很多的帮助   杨健:接下来讨论最后一个话题,关于隐私与安全。比如,现在人脸的关注度更高,各个城市的监控建设,摄像头越来越密集,可以实现跨区域、轨迹追踪、身份识别到公安系统。这个确实有利于保护我们的安全。但是,现在有一些滥用的情况,有一些商业组织,比如连锁商店通过人脸识别的方式,最大程度的追踪用户的信息,了解隐私信息、购物习惯、消费能力,针对性地推出引导购物建议   比如全国有很多某奢侈品品牌的连锁商店,你在其中某一两家店购买过某几款产品,之后你再进任何一家连锁店,人家可能就已经知道你之前买过什么,喜欢买什么类型的产品,他会针对性给你做推荐,对症下药,让你掏更多的钱。从商家的角度来讲,这给商业最大程度赋能,给他们释放了很多创造价值的机会。但是,从另一个角度来讲,你的个人信息很大程度上被滥用了   我们最近可以看到美国旧金山、奥克兰等几个城市在公共领域推出政策禁用人脸识别。因为,人脸识别是无感知的,你可能都不知道那里有摄像头,但是他可以抓取你的信息,你的个人隐私就会被侵犯。而且,通过大数据的分析还可以更多的了解你个人,有研究表明通过大数据分析可以通过人脸识别分析一个人的智力水平、性取向,甚至政治趋向,都可以通过大数据分析出来,这是挺可怕的   於巧红:这些是做生物识别都比较关注的,特别是做生物特征,只要涉及生物特征采集,就会涉及隐私的收集,有的收集没有边界,就会滥用,不管是人脸、指纹还是声纹都会存在这个问题,大家的关注点不通。关于人脸,在我们国家现在没有立法限制,更多是来自于民间的声音。从技术层面来看这是很严峻的问题。我们任何人的生物特征,比如人脸只有一个,而且终身不能更改。这个特征被滥用后,对于泄密、不法分子非法利用时会造成连锁反应,甚至涉及社会问题、人身安全和金融安全   从全球发展来看,任何技术都是一把双刃剑,看用在谁的手上。只能从立法角度限制使用,在哪些地方能用,哪些地方不能用,需要使用者和被使用者规范使用环境。对于不规范的使用的,从目前的情况来看,国际上通行的做法是可取的,就是限定使用范围、使用边界,包括对于泄露隐私的个人数据造成损失进行追责。从而在一定层面上限制商家使用规范   从我们来讲,没有其他更好的办法,用道德约束在中国是行不通的。从我们获取的数据来看,任何厂家特别是生物识别的厂家是想获取更多的数据,拿过来说是做研究,有很多应用是可以外延的。抛开对外讲,我们私下很多都是这样,这需要全社会不懈的努力、长期的努力,甚至需要社会事件推动这件事的发展。个人付出沉重的代价才能规范社会对生物特征的应用在比较公开、透明以及有利于社会的情况下进行识别。这是我一点点看法,谢谢   孔祥辉:我觉得杨总提的问题挺大的。从我们角度来说,一是企业的责任,企业除了赚钱的责任还有社会的责任,在社会责任上,企业的自律性,考虑数据拿出去共享,还是保护隐私,这是企业家和在座同行要思考的问题,是不是要针对道德底线做一些事情   如果真的涉及公共安全,人脸识别的普及还是必要的,因为遵纪守法的人多,犯法的人少。我们一定要让个人信息一定暴露在社会之下,一是制造约束力,二是快速揪出谁是这个社会不安定的因素。对于公共安全和国家的做法,法律可以去做。作为企业,也需要考虑自己的社会责任,避免造成不良现象的扩大化,或者大家为了追逐利益降低自己的道德底线   孟勤海:安全、隐私和隐私安全是三个话题,都有很庞大的内涵。从两个维度理解这个问题:一是技术,二是体制。技术,比如从技术上,手机如何解决指纹的安全,指纹存在手机内部的安全区,指纹记录后很难被拿出来,在技术上肯定要把隐私相关的信息用最安全的方式存起来,从技术上会尽可能避免隐私的泄露。比如大数据存在的服务器,这个机房是不是被管控的?这个摄像头是不是必须监控的?如果人员要进出,那么设备就尽量不能有接口在外面。你要进出,机房门口要有登记,类似这样的安全规则在技术上、规则上很容易制定。在体制上,如果没有体制保障的话,专家也说要有立法和规则,但没有人抓这件事肯定会滥用,很多问题是技术解决不了的。我的理解是,体制要不断地完善   孙云刚:前面专家讲得差不多了。首先,立法是基础,是必经之路。二是资质,什么样的企业可以获得核心数据,这是一定要提到比较高的层面颁发许可证。三是技术,需要在座同行提高自己的,比如手指存储指纹的区域是外界获取不到,从技术角度如何提高信息安全   代启强:我认为在人脸识别行业应该仿效电影建立安全等级制度,最高等级是安全,最低等级是商业应用。经过一段时间沉淀后,一些无用的商业人脸识别设备或者行为会自然而然的被淘汰   蔡博:在这个问题上,每个个体都是比较独特的,自己的生物信息也算是比较独特的,几乎不可能有相同的。个人信息和隐私密切相关,相信大家无法完全避免泄露,你很难天天把脸遮住走在大马路上。所以,更多希望我们的同行能自律。这是第一   第二,希望政府和相关机构出台相关的政策。但是,美国那几个城市,从源头上禁止人脸识别,个人认为这是不可取行为,这就好比把自己封闭起来、独立起来。毕竟是一个人是生活在群体里的,不可能把自己封闭起来,自己的相关信息无法做到完全的保密。现在处于大数据时代,我们要在相关立法、制度下规范好,信息在某些特定场景下不要被滥用是最主要的。就像大家手机号经常收到骚扰电话推销保险等,一样的道理。手机号和人脸的特征、生物特征相比,生物特征更独特,一张脸的数据信息是换不了的,对我们隐私、数据没有制度的保障,就没有安全的保证。我们更希望相关的单位有一些动作。据我了解到的信息,国家已经有这个规划,但具体什么时候我不知道   杨健:我们今天的讨论环节到此结束,感谢各位来宾,同时感谢各位嘉宾的精彩分享秒速赛车 秒速赛车app 秒速赛车手机版官网 秒速赛车游戏大厅 秒速赛车官方下载 秒速赛车安卓免费下载 秒速赛车手机版 秒速赛车大全下载安装 秒速赛车手机免费下载 秒速赛车官网免费下载 手机版秒速赛车 秒速赛车安卓版下载安装 秒速赛车官方正版下载 秒速赛车app官网下载 秒速赛车安卓版 秒速赛车app最新版 秒速赛车旧版本 秒速赛车官网ios 秒速赛车我下载过的 秒速赛车官方最新 秒速赛车安卓 秒速赛车每个版本 秒速赛车下载app 秒速赛车手游官网下载 老版秒速赛车下载app 秒速赛车真人下载 秒速赛车软件大全 秒速赛车ios下载 秒速赛车ios苹果版 秒速赛车官网下载 秒速赛车下载老版本 最新版秒速赛车 秒速赛车二维码 老版秒速赛车 秒速赛车推荐 秒速赛车苹果版官方下载 秒速赛车苹果手机版下载安装 秒速赛车手机版 秒速赛车怎么下载

相关推荐:



购买咨询电话
4008-888-888

  • <tr id='vV32yP'><strong id='vV32yP'></strong><small id='vV32yP'></small><button id='vV32yP'></button><li id='vV32yP'><noscript id='vV32yP'><big id='vV32yP'></big><dt id='vV32yP'></dt></noscript></li></tr><ol id='vV32yP'><option id='vV32yP'><table id='vV32yP'><blockquote id='vV32yP'><tbody id='vV32yP'></tbody></blockquote></table></option></ol><u id='vV32yP'></u><kbd id='vV32yP'><kbd id='vV32yP'></kbd></kbd>

    <code id='vV32yP'><strong id='vV32yP'></strong></code>

    <fieldset id='vV32yP'></fieldset>
          <span id='vV32yP'></span>

              <ins id='vV32yP'></ins>
              <acronym id='vV32yP'><em id='vV32yP'></em><td id='vV32yP'><div id='vV32yP'></div></td></acronym><address id='vV32yP'><big id='vV32yP'><big id='vV32yP'></big><legend id='vV32yP'></legend></big></address>

              <i id='vV32yP'><div id='vV32yP'><ins id='vV32yP'></ins></div></i>
              <i id='vV32yP'></i>
            1. <dl id='vV32yP'></dl>
              1. <blockquote id='vV32yP'><q id='vV32yP'><noscript id='vV32yP'></noscript><dt id='vV32yP'></dt></q></blockquote><noframes id='vV32yP'><i id='vV32yP'></i>